Муниципальное бюджетное общеобразовательное учреждение
муниципального образования г.Саяногорск
средняя общеобразовательная школа №6
Рассмотрено:
руководитель ШМО
_________/Сабитова С.И./
ФИО
Протокол № 1
от «29» августа 2025 г.
Согласовано:
зам.директора по ВР
МБОУ «СОШ № 6»
_________/Козарез О.Ю./
Утверждено:
Директор МБОУ «СОШ №6»
________/ Богданова О.В./
ФИО
от «29» августа 2025 г.
Приказ № 237
от «29» августа 2025 г.
Рабочая программа курса внеурочной деятельности
«Математическая шкатулка»
7 класс
2025-2026 учебный год
Программу составила
Араштаева Ирина Гавриловна
Учитель математики
г. Саяногорск, 2025г
Пояснительная записка
Программа курса «Математическая шкатулка» составлена в соответствии с
требованиями Федерального государственного образовательного стандарта основного
общего образования, Примерных программ внеурочной деятельности под редакцией В.А.
Горского, а также с учетом рабочей программы воспитания ООО МБОУ СОШ№ 6.
Организация педагогом различных видов деятельности школьников во внеучебное
время, позволяет закрепить знания по предмету, повысить качество успеваемости,
активизировать умственную и творческую деятельность учащихся, сформировать интерес к
изучению математики.
Программа данного курса представляет систему занятий, направленных на
формирование умения нестандартно мыслить, анализировать, сопоставлять, делать
логические выводы, на расширение кругозора учащихся, рассчитана на 34 часа, 1 час в
неделю.
Актуальность курса состоит в том, что он направлен на расширение знаний
учащихся по математике, развитие их теоретического мышления и логической культуры.
Цель программы: Создание условий и содействие интеллектуальному развитию детей.
Задачи:
Привитие интереса учащихся к математике.
Отрабатывать навыки решения нестандартных задач.
Воспитание настойчивости, инициативы.
Развитие математического мышления, смекалки, математической логики.
Развитие математического кругозора, мышления, исследовательских умений
учащихся и повышение их общей культуры.
Развитие у учащихся умений действовать самостоятельно (работа с сообщением,
рефератом, выполнение творческих заданий).
Создать своеобразную базу для творческой и исследовательской деятельности
учащихся.
Повысить информационную и коммуникативную компетентность учащихся.
Формирование умений выдвигать гипотезы, строить логические умозаключения,
пользоваться методами аналогии, анализа и синтеза.
Формы и методы проведения занятий
Изложение теоретического материала внеурочных занятий может осуществляться с
использованием традиционных словесных и наглядных методов: рассказ, беседа,
демонстрация видеоматериалов, наглядного материала, а также интернет ресурсов.
При проведении занятий по курсу на первое место выйдут следующие формы
организации работы: групповая, парная, индивидуальная.
Методы работы: частично-поисковые, эвристические, исследовательские, тренинги.
Ведущее место при проведении занятий должно быть уделено задачам, развивающим
познавательную и творческую активность учащихся. Изложение материала может
осуществляться с использованием активных методов обучения.
Важным условием организации процесса обучения на внеурочных занятиях является
выбор учителем рациональной системы форм и методов обучения, её оптимизация с учётом
возрастных особенностей учащихся, уровня математической подготовки, а также специфики
образовательных и воспитательных задач.
Формы организации деятельности обучающихся:
-
индивидуально-творческая деятельность;
творческая деятельность в малой подгруппе (3-6 человек);
коллективная творческая деятельность,
работа над проектами,
учебно-игровая деятельность (познавательные игры, занятия);
игровой тренинг;
конкурсы, турниры.
Формы контроля: устный счет, проверочная работа, самостоятельная работа,
тестовая работа, практическая работа, тестирование, олимпиада.
-
Общая характеристика курса
Обучение детей организуется в форме игры, обеспечивающих эмоциональное
взаимодействие и общение со взрослым. Создаются условия для свободного выбора
ребёнком содержания деятельности и возникновения взаимообучения детей. Основное место
занимает содержание взаимодействия и общение взрослого с детьми, основанное на
понимании того, что каждый ребёнок обладает неповторимой индивидуальностью и
ценностью, способен к непрерывному развитию.
Формируются такие качества и свойства психики детей, которые определяют собой
общий характер поведения ребенка, его отношение ко всему окружающему и представляют
собой «заделы» на будущее, так как именно в этот период складывается потенциал для
дальнейшего познавательного, волевого и эмоционального развития ребёнка.
Задачи
данного курса решаются в процессе ознакомления детей с разными
областями математической действительности: с количеством и счетом, измерением и
сравнением величин, пространственными и временными ориентировками.
Данный курс создаёт условия для развития у детей познавательных интересов, формирует
стремление ребёнка к размышлению и поиску, вызывает у него чувство уверенности в своих
силах, в возможностях своего интеллекта. Во время занятий по предлагаемому курсу
происходит становление у детей развитых форм самосознания и самоконтроля, у них
исчезает боязнь ошибочных шагов, снижается тревожность и необоснованное беспокойство.
В результате этих занятий ребята достигают значительных успехов в своём развитии.
Методы и приёмы организации деятельности на занятиях по развитию
познавательных способностей ориентированы на усиление самостоятельной практической и
умственной деятельности, а также познавательной активности детей. Данные занятия носят
не оценочный, а в большей степени развивающий характер. Поэтому основное внимание на
занятиях обращено на такие качества ребёнка, развитие и совершенствование которых очень
важно для формирования полноценной мыслящей личности. Это – внимание, восприятие,
воображение, различные виды памяти и мышление.
Планируемые результаты изучения учебного курса
Личностные, метапредметные результаты освоения конкретного учебного курса:
Личностными результатами изучения курса «Математическая шкатулка» являются
формирование следующих умений и качеств:
развитие умений ясно, точно и грамотно излагать свои мысли в устной и письменной
речи, понимать смысл поставленной задачи;
креативность мышления, общекультурное и интеллектуальное развитие, инициатива,
находчивость, активность при решении математических задач;
формирование готовности к саморазвитию, дальнейшему обучению;
выстраивать конструкции (устные и письменные) с использованием математической
терминологии и символики, выдвигать аргументацию, выполнять перевод текстов с
обыденного языка на математический и обратно;
стремление к самоконтролю процесса и результата деятельности;
способность к эмоциональному восприятию математических понятий, логических
рассуждений, способов решения задач, рассматриваемых проблем.
Метапредметным результатом изучения курса является формирование универсальных
учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель
УД;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из
предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения
проекта);
разрабатывать простейшие алгоритмы на материале выполнения действий с
натуральными числами, обыкновенными и десятичными дробями, положительными и
отрицательными числами;
сверять, работая по плану, свои действия с целью и при необходимости исправлять
ошибки самостоятельно (в том числе и корректировать план);
совершенствовать в диалоге с учителем самостоятельно выбранные критерии оценки.
Познавательные УУД:
формировать представление о математической науке как сфере человеческой
деятельности, о ее значимости в развитии цивилизации;
проводить наблюдение и эксперимент под руководством учителя;
осуществлять расширенный поиск информации с использованием ресурсов библиотек
и Интернета;
определять возможные источники необходимых сведений, анализировать найденную
информацию и оценивать ее достоверность;
использовать компьютерные и коммуникационные технологии для достижения своих
целей;
создавать и преобразовывать модели и схемы для решения задач;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от
конкретных условий;
анализировать, сравнивать, классифицировать и обобщать факты и явления;
даватьопределенияпонятиям.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие
цели, договариваться друг с другом и т. д.);
в дискуссии уметь выдвинуть аргументы и контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать
ошибочность своего мнения и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения),
доказательство (аргументы), факты (гипотезы, аксиомы, теории);
уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных
позиций.
Предметные результаты.
Учащиеся должны научиться анализировать задачи, составлять план решения, решать
задачи, делать выводы.
Решать задачи на смекалку, на сообразительность.
Решать логические задачи.
Работать в коллективе и самостоятельно.
Расширить свой математический кругозор.
Пополнить свои математические знания.
Научиться работать с дополнительной литературой.
Содержание курса «Математическая шкатулка»
7 класс
Общее число часов – 34 ч.Решение логических зада (10 ч.), текстовые задачи (8 ч.),
геометрические задачи (8 ч.), математические головоломки (4 ч.), решение олимпиадных
задач (4 ч.),
Календарно-тематический план для 7 класса
№
урока
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Тема урока
Решение логических задач 10 ч
Задачи типа «Кто есть кто?» Метод графов.
Задачи типа «Кто есть кто?»Табличный способ
Круги Эйлера
Круги Эйлера
Задачи на переливание
Задачи на взвешивание
Решение задач
Задачи повышенной сложности.
Задачи повышенной сложности.
Математический КВН
Текстовые задачи 8 ч
Текстовые задачи, решаемые с конца.
Текстовые задачи, решаемые с конца.
Задачи на движение.
Задачи на движение.
Задачи на части
Задачи на части
Задачи на проценты.
Задачи на проценты.
Геометрические задачи 8 ч
Историческая справка. Архимед
Геометрия на клетчатой бумаге
Формула Пика
Решение задач на площадь
Решение задач на площадь
Решение геометрических задач путём разрезания на части.
Решение геометрических задач путём разрезания на части.
Математическое соревнование.
Математические головоломки 4 ч
Математические ребусы
Математические ребусы
Принцип Дирихле.
Принцип Дирихле.
Решение олимпиадных задач 4 ч
Решение олимпиадных задач.
Решение олимпиадных задач.
Решение задач ВПР.
Итоговое занятие – олимпиада
Дата план
03.09.2025
10.09.2025
17.09.2025
24.09.2025
01.10.2025
8.10.2025
15.10.2025
22.10.2025
05.11.2025
12.11.2025
19.11.2025
26.11.2025
03.12.2025
10.12.2025
17.12.2025
24.12.2025
14.01.2026
21.01.2026
28.01.2026
04.02.2026
11.02.2026
18.02.2026
25.02.2026
04.03.2026
11.03.2026
18.03.2026
25.03.2026
08.04.2026
15.04.2026
22.04.2026
29.04.2026
06.05.2026
13.05.2026
20.05.2026
Информационно-методическое обеспечение:
Дата
факт
1. Примерные программы внеурочной деятельности. Начальное и основное образование.
Под редакцией В.А.Горского. М. «Просвещение» 2011г.
2. Внеурочная деятельность школьников. Методический конструктор.М.
«Просвещение» 2011г.
3. Екимова М.А., Кукин Г.П. Задачи на разрезание. М.: МЦНМО, 2002
4. Зайкин М.И. Математический тренинг: Развиваем комбинационные способности:
Книга для учащихся 4-7 классов общеобразовательных учреждений. М.: Гуманит. изд.
центр ВЛАДОС, 1996.
5. Игнатьев Е.И. В царстве смекалки. М: Наука, Главная редакция физикоматематической литературы, 1979.
6. Лоповок Л.М. Математика на досуге: Кн. для учащихся средн. школьного возраста.
М.: Просвещение, 1981.
7. Мерлин А.В., Мерлина Н.И. Задачи для внеклассной работы по математике (5-11
классы): Учеб. Пособие, 2-е изд., испр. М.: Издат-школа, 2000.
8. Руденко В.Н., Бахурин Г.А., Захарова Г.А. Занятия математического кружка в 5-ом
классе. М.: Издательский дом «Искатель», 1999.
9. Седьмой турнир юных математиков Чувашии: 5-11 классы. Чебоксары, 2003.
10. Смыкалова Е.В. Дополнительные главы по математике для учащихся 6 класса. СПб.:
СМИО Пресс, 2002.
11. Спивак А.В. Математический кружок. 6-7 классы. М.: Посев, 2003.
12. Спивак А.В. Тысяча и одна задача по математике: Кн. для учащихся 5-7 кл. М.:
Просвещение, 2002.
13. Фарков А.В. Математические олимпиады в школе. 5-11 классы. 3-е изд., испр. и доп.
М.: Айрис-пресс, 2004.
14. Фарков А.В. Олимпиадные задачи по математике и методы их решения. М.: Дрофа,
2003.
15. Шарыгин И.Ф., Шевкин А.В. Математика: Задачи на смекалку: Учеб.пособие для 5-6
кл. общеобразоват. учреждений. М.: Просвещение, 2000.
16. Шейнина О.С., Соловьева Г.М. Математика. Занятия школьного кружка. 5-6 кл. М.:
Изд-во НЦ ЭНАС, 2003.
17. Технические средства обучения
Мультимедийный компьютер.
Мультимедийныйпроектор.
Интерактивная доска
18. Учебно-практическое и учебно-лабораторное оборудование
Доска магнитная.
Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир,
угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.